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SUMMARY 
A method capable of solving very fast and robust complex non-linear systems of equations is presented. The block 
adaptive multigrid @AM) method combines mesh adaptive techniques with multigrid and domain decomposition 
methods. The overall method is based on the FAS multigrid, but instead of using global grids, locally enriched 
subgrids are. also employed in regions where excessive solution errors are encountered. The final mesh is a 
composite grid with uniform rectangular subgrids of various mesh densities. The regions where finer grid 
resolution is necessary are detected using an estimation of the solution error by comparing solutions between grid 
levels. Furthermore, an alternative domain decomposition strategy has been developed to take advantage of 
parallel computing machines. The proposed method has been applied to an implicit upwind Euler code (EuFlex) 
for the solution of complex tmnsonic flows around aerofoils. The efficiency and robustness of the BAM method 
are. demonstrated for two popular inviscid test cases. Up to 19-fold acceleration with respect to the single-grid 
solution has been achieved, but a further twofold speed-up is possible on four-processor parallel computers. 
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1. INTRODUCTION 
Although multigrid methods were introduced as grid adaptation techniques, they have been established 
only as fast and efficient solvers for large-scale computations. So far only a few mesh adaptive 
multigrid schemes have been proposed, e.g. the multilevel adaptive techniqaue (MLAT),’ the fast 
adaptive composite (FAC) gridzs3 and a few others,C7 but their domain of application is restricted to 
elliptic-type equations. Regarding the development of adaptive schemes for hyperbolic systems of 
equations, few attempts have been made to take advantage of the favourable multigrid concept for the 
acceleration of the solution.’ On the other hand, great advantages have been pointed out for the use of 
truncation error prediction as a reliable error sensor for mesh adaptation procedures, although few 
studies have presented numerical resultss” and few theoretical analyses exist.’”” 

The mesh adaptation methods are classified as mesh-moving and mesh-embedding methods, but a 
combination of them is also possible. The mesh-moving approach provides the best solution for a 
given number of points, whereas the mesh-embedding technique aims to attain the prescribed level of 
accuracy for the least computational cost. The structured grid-embedding technique employs only 
uniform ~ubgrids ,4 ,~*~*’~ whereas the semi-structured grid-embedding technique constructs a fully 
irregular mesh of quadrilaterals with refinements exactly where needed.’,* Finally, the completely 
unstructured mesh refinement technique utilizes only triangular volumes as in the unstructured finite 
element method. Each of the above grid adaptation methods has its own advantages ranging from the 
ability to handle complex domains to the ease of implementation and fast convergence. 
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For the present method the implementation of the meshembedding technique using rectangular 
blocks has been adopted. This technique has been used in combination with multigrid methods only 
for elliptic equations successllly."' It has been proposed without multigrid for the solution of 
hyperbolic-type equations of inviscid flows9 and hydrodynamics.'o In these studies,9"' rectangular 
patches of higher grid resolution are introduced in regions with increased truncation error levels. 
However, multigrid methods should always be considered for the development of mesh adaptive 
methods, because the existence of several grid scales improves the single-grid solution convergence 
rates significantly. Furthermore, regarding the composite grid solution techniques in hyperbolic 
equa~ons,9.~0.~4 the explicit solution schemes are dominant, since implicit methods require even more 
complicated schemes. 

In the present study a dynamic mesh adaptive method, the block adaptive multigrid (BAM) 
method," is presented incorporating a reliable error prediction device and a composite grid-tnultigrid 
solver. The method is based on the full multigrid (FMG) scheme. Starting from an acceptable coarse 
mesh, the solution creates subgrids of finer grid levels only where required. In this way an adapted non- 
uniform grid is decomposed to uniform subgrids where common solvers can be used. The composite 
grid structure is handled entirely by the multigrid method, whereas for the parallelization of the code an 
alternative domain decomposition is used for the achievement of load balance. For the integration and 
relaxation of the time-marching Euler equations an unfactored implicit upwind finite volume! scheme 
has been used.I9 The proposed BAM method is verified for two complex transonic inviscid cases. 
Using the proposed method, robust and accurate solutions can be obtained in a reduced number of 
work units (18-fold acceleration with 4.5 times fewer volumes with respect to the single-grid 
calculations). 

The rest of the paper is organized as follows. In the next section the Euler equations and the finite 
volume discretization method are analysed. The block adaptive multigrid (BAM) method is composed 
of three main parts: the non-linear multigrid solver is presented in Section 3, the truncation error sensor 
for the prediction of the solution error is discussed in Section 4 and the composite grid solver is 
analysed in Section 5.  In Section 6 an alternative domain decomposition method is proposed to take 
advantage of multiple processors in situations where mesh adaptive techniques have faced significant 
problems. Finally, results are presented in Section 7 and conclusions are drawn in Section 8. 

2. GOVERNING EQUATIONS 

The general inviscid flow is described by the Euler equations, which can be solved using the very 
popular time-marching conservative formulation. For the two-dimensional case, conservation laws are 
used with body-fitted coordinates < and q: 

(1) 
a u a e a f  
-+-+--0.  
a x *  

The steady state solution is found when the time derivative of the solution vector vanishes. The 
solution vector and the fluxes n o d  to the 5 = const. and q = mmt. faces are given respectively by 

u = Jii, e = J(Etx + ity), f = J ( E r l ,  + i vy )  (2) 
where J is the Jacobian of the inverse mapping. In the Cartesian co-ordinate system the corresponding 
solution vector and inviscid fluxes are 
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where E is the total energy ( E  = p / ( y  - 1) + 0.5p(u: + u:)) and p and p are the pressure and density 
respectively. 

In order to solve equation (l), a cell-centred finite volume scheme with an implicit backward Euler 
solver'' for the evolution in time has been used. Since only the steady state solution is required, a 
scheme with first-order accuracy in time is used and the discretized implicit form of equation (1) is 
given as 

By linearizing the fluxes around the time level n, 

Denoting the correction of the solution vector by Au (Au=un+l - u"), a delta formulation of 
equation (4) can be easily found as 

Au 
- At + (AnAuc) + (BnAu)? = -(ez + f;) = - R H " ( ~ ~ ) ,  

where A and B are the Jacobians of the fluxes e and f respectively: 

L"Au = (At-' + A: + B;)Au = -R~s"(u"). (7) 

Upwind differencing of the flux vectors is the natural way to reach a diagonally dominant system as 
well as to introduce numerical dissipation, both crucial for the efficiency and robustness of the solver. 
For the flux calculations at the faces of the volumes a linear one-dimensional Riemann solver 
(Godunov approach) has been employed which guarantees the homogeneous property of the Euler 
fluxes." The mean values of the conservative variables at both sides of the face are used as flow 
variables at the volume face for the Riemann solver. Depending on the sign of the eigenvalues L of the 
local Jacobians A and B, the conservative variables are extrapolated up to third-order accuracy in the 
computational space to each face of the volumes (MUSCL-type interpolation). Sensing functions are 
used to guarantee the monotonic behaviour of the solution, i.e. in shock regions the accuracy of the 
solution decreases to avoid oscillations. The flow quantities at the faces are defined as the mean value 
of the left (1) and right (r) states: 

ui+1/2 = 0-5[( 1 + sigd)ul + (1 - si&)uJ. (8) 

The order of accuracy of the flux difference operator is controlled using an interpolation procedure 
involving several volumes h m  both sides of the corresponding volume in each direction, e.g. for the 
(direction we have 

1 
e 

u1 = -(au1+ bui + bui-1 + CU,+I + dUi+& 

u, = -(aui+, + bUj+2 + mi+ dUI+l). 

(94  

(9b) 
1 
e 

w h m  u, b, c, d and e are properly defined scalar quantities. Thus for first-order accuracy it holds that 
e=a=l and b=c=d=O, for sccond-order accuracy it holds that e=2, a=3 ,  b =  - 1 and 
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c = d = 0, etc. A linear superposition of the state vector computed from equations (9) for different 
accuracies finally defines the left and right states at the corresponding face as 

U1.r = ([Uf,r(l - c I )  -k clu~rl(l  - c2) + cZu:r)(l - c 3 )  + C3ul.r. (10) 
The superscripts in equation (10) denote the order of accuracy of the state vector computed from 

equations (9), c1 IS a user-specified scalar quantity and c2 and c3 are sensing functions detecting shocks 
and spikes respectively, defined as 

c2 = ~ n r l . a l ( ~ ~ 2 ~ l + ~ ~ ~ I , + 1 ) 1 ,  (1  la) 

c3 = minp, az(M&I, + M&li+l)\, (1 Ib) 
where M is the local second derivative of the Mach number in the <-direction and al  and u2 are user- 
defined scalar quantities. Since the Euler equations are a coupled system, the average state at the cell 
face, from which inviscid fluxes are obtained, is calculated from the solution of a Riemann problem. 
With the state vector calculated from equations (8)410), the inviscid fluxes are computed directly (flux 
difference splitting) as 

e1+1/2 = e(U,+1/2). (12) 

With the divergence of the characteristically extrapolated fluxes on the right-hand side (RHS), equation 
(7) has to be solved approximately at each time step. In volume ( i , ~ ' )  the variation in Au with time is 
calculated as 

AAu,- + BAu,,- + CAu, + DAu, J+l + EAU,+~ , = wRes", (13) 

where A, B, C, D and E are 4 x 4 submatrices emerging from a Godunov-like first-order flux-splitting 
scheme: 

+- = [0*5(c2 - ')lB;J+l/2 - BIJ-I/2' 
+ A = ['% - ')lA;1/2J - A#-l/ZJ'  

c2 is used to reduce the accuracy order of the flux-splitting scheme due to discontinuities and is found 
from equation (1 1 a). 

Very large CFL numbers (150-200) can be used, since the true representation of the fluxes of the 
left-hand side (LHS) Jacobians has been employed. When equation (13) is applied to the entire 
computational domain, a large block pentadiagonal system emerges which can be solved iteratively. 
The term o is an underrelaxation factor which compensates the different spatial order of accuracy 
between the RHS and LHS of equation (7) and for the present implementation varies from 0.45 to 0.60. 
Because of the time-marching approach, the solution procedure can be further accelerated by 
advancing in time with the local optimal time step At, keeping the CFL number constant (local time 

Boundary conditions are applied on both sides of equation (7). For the inviscid fluxes, characteristic 
boundary conditions found from the one-dimensional Riemann solution at the wall and at the 
freestream boundaries are stored in phantom cell rows in the boundary volumes. Thus the solution 
method extracts automatically the required information. For the Au variables, simple boundary 
conditions are also prescribed at the phantom cells, thus avoiding complex manipulations on the LHS 
of equation (7). 

stepping). 
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3. MULTIGRID METHOD 

For timedependent (and time-marching) discretized equations the allowable time step increases with 
the mesh size according to the CFL condition. Hence, employing fine grids, more computational work 
per time step and more time steps are required to reach the steady state solution, yielding a quadratic 
increase in the overall computing cost with the mesh size. For the present multigrid scheme it is 
necessary to define a sequence of grids in such a way that a coarse volume is constructed by four 
volumes of the next finer grid level, deleting every other grid line. This cellwise coarsening is essential 
so that the fine grid fluxes are conserved at the coarser grid levels. Owing to the implicit nature of the 
solution procedure and the existence of two differential operators in equation (7), the RHS operator on 
the coarser grids should be transferred from the finest grid level, whereas the LHS operator of equation 
(13) can be calculated at each grid level. For composite grids the full approximation scheme (FAS) is 
preferable since it operates at the coarser grid levels with the finest grid variables. Formulating the FAS 
with the ‘alternative point of view’,2o the finest grid is considered as a device to improve the spatial 
accuracy of the solution, whereas most of the relaxation work is spent at the coarser grid levels. Hence, 
instead of interpreting the coarser grids as subsidiary grids to smooth the high-frequency e m r  
components of the finest grid level, the coarser grid levels are considered as basic grids for the 
relaxation process, while the finer grids are considered as devices to compute accurate fine-to-coarse 
multigrid defect corrections (7). In the present multigrid scheme the solution formulation is made 
independent of the grid level (coarse or fine) and the type of grid (local or global) by simply adding to 
the RHS of equation (7) the appropriate fine-tocoarse defect correction. Thus, with the current grid 
level denoted by n, its next finer level by n + 1 and its local finest level by N (N 2 n 2 1; 1 is the 
coarsest grid level of the domain), the multigrid solution formulation is given as 

LnAu, = -RH,(U,) + <+I 9 (14) 

<+I = Ln(C+1AUn+l) - Z:+1(Ln+lAun+l)v with = 0. (1 5) 

where the fine-to-coarse defect correction is 

Because the multigrid cycle coincides with the time step, the time scale will not be considered. 
For the coarser grid genemtion the cellwise coarsening technique has been adopted, meaning that 

four fine volumes (2 x 2) are joined together to construct a coarse volume. Maintaining the outer faces 
of the volumes, flux conservation is achieved easily not only at the coarser grid levels but also at the 
local subgrid boundaries. However, the coarse grid cell centres are not a subset of the fine ones, so two 
different restriction operators are required. The restriction operator (I) for the physical variables is the 
simple average of the four finer volumes: 

The restriction operator (Z) for the generalized residuals Re!s and T is the algebraic summation of the 
residuals of the corresponding finer volumes. The fluxes of the inner common fine grid faces are 
cancelled, so the finest grid fluxes are restricted to the coarser grid levels without loss: 

Res, = Res,,, . (17) 

For the coarse-to-fine direction of the multigrid cycle, neither Euler equation solutions nor 
relaxation sweeps are required. Therefore only the Au variables are stored for all grid levels and 
prolongated from the coarse to the fine grid levels using the standard FAS prolongation form 

(18) Au,+l = Au,+l + IJ;+’(h,, - ];+~AU,+,). 
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For the prolongation operator (11) simple injection instead of bilinear interpolation has been used to 
facilitate the prolongation procedure in composite grids. 

In terms of the multigrid strategy, two important issues should be highlighted. The first concerns the 
number of relaxation sweeps at each grid level. Owing to the adopted implicit solution scheme, the 
convergence of the multigrid scheme improves when fewer relaxation sweeps are performed on the 
finer grids and more relaxation work is spent at the coarser grid levels. Thus the number of sweeps at 
each level increases proportionally to the depth of the grid level.20 Secondly, for the coarse-to-fine 
direction, no relaxation sweeps are performed except for the prolongation steps of the correction vector 
Au (equation (1 8)). Using this kind of V-cycle, insignificant extra storage (< 5%) is demanded by the 
entire multigrid implementation. Except for the correction vector Au, no other variables and fluxes are 
required in the coarse-to-line direction, so for the coarse grid variable storage the same positions as for 
the h e s t  grid variable storage can be used. For the relaxation scheme, although collective Gauss- 
Seidel relaxation in lexicographic order behaves satisfactorily for the single-grid code, its symmetric 
variation has been employed. The symmetric collective Gauss-Seidel relaxation scheme improves the 
smoothing properties, avoiding possible grid alignment. Thus the robustness and efficiency are 
increased without implementing a computationally expensive and complex scheme such as line 
relaxation. 

4. SOLUTION ERROR ESTIMATION 
To identify the regions of the computational domain with excessive solution errors, a reliable error 
sensor is required. To evaluate the solution error, two approaches essentially exist: the first involves the 
physically based information on the problem, i.e. solution gradients, while the second, numerically 
motivated, is the evaluation of the discretization error. The former approach may implicate the 
refinement process to reduce errors that have no influence on the global solution. In contrast, the 
evaluation of the discretization error indicates errors that can be confronted by the refinement 
procedure. An estimation of the discretization error is given by the truncation e r r ~ r ~ * * ' ~  (t), which on 
the basis of a Taylor expansion is defined by 

t n  = QnU, (19) 

where Q is the differential operator, u is the physically correct solution and n is the typical mesh size of 
the finest grid level N. Guided by the physical interpretation of the truncation error concept and 
provided that the solution is smooth at the domain, Richardson extrapolation can extend the validity of 
equation (1 9) to practical problems. Thus the difference in truncation error between two consecutively 
fine grid levels N and N - 1 can be used to approximate the solution error: 

=QNuN -QN-~uN-I .  (20) 
Because of the implicit solution procedure, for the choice of the differential operator Q two 

possibilities essentially exist, namely the operators LAu and Res(u) of equation (7). Adopting the 
operator LAP equation (20) practically coincides with equation (1 5 )  of the multigrid defect corntion 
7 which is directly provided by the multigrid solution. However, owing to the implicit solution 
procedure, the operator LAu includes more relaxation errors and is calculated with worse accuracy 
than the operator Re~(u) .~ '  Therefore the solution error evaluation for the grid level N - 1 is given by 

(21) 

G-' = -R~s~-I(I~-'oN). (22) 

c-' = X;-'tN - tN-1 = z~ N-1 ResN(uN) - RC%N_~(I;-'UN), 

whereas for a filly converged solution equation (21) reduces to 
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The proposed error sensor requires additional work of only one-fourth of a simple flux calculation 
and does not demand a totally converged solution (ResN(u~) # 0) as it converges from the initial time 
steps to its steady state value. Since the truncation error sensor is a vector, to convert it to a scalar 
variable the Euclidean norm has been adopted, because it behaves similarly to the pressure error of the 
solution.21 

In shock regions where the solution is discontinuous, the Richardson extrapolation scheme is not 
valid any more. As can be shown:' in these regions the calculated truncation error is very large and 
independent of the mesh size. Thus in the automatic adaptive p d u r e  the regions with discontinuous 
solutions are always marked for refinement. 

5.  COMPOSITE GRID STRUCTURE AND SOLUTION 

For the achievement of the most accurate solution with the minimum amount of work, several grid 
adaptive techniques and structures have been proposed. In general the composite grid structure has 
many advantages by enabling the decomposition of a globally non-uniform grid into a union of locally 
uniform subgrids.2 On the other hand, subgrid uniformity is essential to ensure multigrid efficiency 
using simple integration routines (similar to the single-grid solver). Moreover, in the computational 
domain, when the subgrids are restricted to rectangles and the grid refinement ratio is to 2 between 
neighbouring sub grid^,^-' 22 considerable simplifications to the data structure and the interface are 
attained. 

5.1. Multigrid composite structure 

For the dynamically adaptive multigrid strategy a modified full multigrid scheme has been 
developed. Starting the solution procedure with a global coarse grid of acceptable grid resolution after 
solution convergence (or after a fixed amount of work), the truncation error is calculated and the 
solution error is predicted. In regions where the prediction of the error is above a given threshold, the 
corresponding volumes are wed and grouped into rectangular blocks. Then the domain is 
decomposed into the appropriate subgrids and only those which contain flagged volumes are advanced 
to the next grid level, injecting also the come grid solution to the just refined subgrids. The refinement 
procedure continues until the entire computational domain presents local truncation errors below the 
preset threshold. Clearly this strategy has the benefit of a continuous iterative procedure without 
wasting computational work on calculations that will not be used in the next mesh rehement step. 
Taking advantage of the most accurate available solution, the proposed grid adaptive strategy 
converges fast to the most efficient solution. 

5.2. Internal boundary conditions 

A considerable advantage of the composite grid consisting of rectangular subgrids is the use of 
similar integration routines as for global grids. However, for the implicit solution schemes of 
hyperbolic equations, extra requirements at the artificial boundaries are essential, since the accuracy 
and convergence rates of the global grid solution should be maintained. To reduce error propagation at 
the artificial boundaries, specific artificial boundary conditions must hold. Since two differential 
operators are used (equation (7)), different interface solution techniques for each operator should be 
considered. The operator Rea(u) is responsible for maintaining the accuracy of the solution and 
ensuring ftux conservation at the interfaces, whereas to maintain the convergence rate of the global 
solution the flux-splitting operator LAu should be modified. 

Initially the fluxes on the subgrid of the hest grid level should be calculated. For all the subgnds 
exactly the same integration routine has been used. To cope with the grid non-uniformity at the 
interfaces, the h e r  subgrids are extended into the neighbouring coarser subgrids using fictitious zones 
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F i g m  I .  Onedimensional analogue of the constmctim of the fictitious fine volumes F3 and F4 inside the coiuse grid block 2. At 
the coarser multigrid levels, blocks 1 and 2 form a uniform block (superblock) 

with a width of two fine volumes. Thus the flux calculation at the initial interfaces is done as if the h e  
subgrid was uniform (Figure 1). Obviously the key to maintaining the accuracy of the solution is the 
correct calculation of the fictitious fine grid volumes. For this task, linear, bilinear or even quadratic 
interpolation techniques fail, since the wave propagation of the solution is not considered. The most 
suitable extrapolation pmedure for the correct calculation of the fictitious volumes is the same one as 
used by the global solution scheme (equations (9) and (1  0)). The proposed extrapolation strategy at the 
intergrid boundaries is depicted in Figures 1 and 2. To calculate the fine grid fluxes (block 1) at the 
interface, the fictitious fine volumes F3 and F4 (Figure l), which correspond to the coarse volume CI, 
must be calculated first. For this calculation the same MUSCL-type characteristic extrapolation scheme 
has been employed involving the coarse volumes CI and C2 and the fine ones FI and F2. Using 
equations (9H11) the left and right states of volume C1 are considered as the new states F3 and F4; 
hence the fine grid fluxes at the interface are calculated straightforwardly. It must be highlighted that no 
interaction of the corresponding row with other rows is allowed, e.g. for the flux calculation at 
boundary face 1 (Figure 2) the same pair of coarse volumes (C1 and C2) is used in conjunction with 
the fine volumes F1 and F2 to define states F3 and F4. 

Af€er calculating the fluxes of the finest subgrid (block 1 in Figure l), the interface fluxes of the 
neighbouring coarser subgrids (block 2) can be calculated explicitly using conservation of fluxes. 
According to the multigrid restriction operator for the residuals, flux conservation across the interfaces 
is achieved by addressing the summation of the fluxes of a pair of h e  volume faces to their adjacent 
coarse volume face (Figure 2). 

F 2  F 3  F 4  

Figure 2. Transfonnation of the non-uniform grid to a fictitious uniform om. For the dculahon of the fluxes at face I ,  MUSCL 
interpolation of the coatse volumts CI and C2 is used to produce the fictitious fine volumes F3 and F4 
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Concerning the relaxation procedure, no modifications to the flux-vector-splitting scheme and 
relaxation solution scheme at the subgrid interfaces are required,'4s22 since owing to the multigrid 
algorithm the relaxation solution procedure refers only to a uniform grid. The relaxation scheme 
sweeps only subgrids that are at the same grid level either originally or as a result of restriction by the 
multigrid process. For example, block 1 in Figure 1 is relaxed first when the control of the multigrid 
cycle is at the third grid level, whereas both blocks 1 and 2 are relaxed when the multigrid control is at 
the second grid level (Figure 1). 

6.  THE PARALLEL BAM METHOD 

In general the parallelization of dynamically adaptive multigrid schemes has faced several 
 problem^.'^^'^^'^ However, for the present method, owing to the rectangular shape of the subgrids 
of the composite grid, parallelization can be straightforward when ideas from domain decomposition 
theory are introduced. For example, one possible technique could be to consider one or more subgrids 
of the composite gnd continuously attached to a single processor for the entire multigrid cycle (fiom 
the finest to the coarsest level), while communication between subgrids of different processors is 
carried out only once per multigrid cycle (vertical communication mode'*). Using this method, load 
balancing is very difficult to achieve, so reduced performance would be expected. 

A different approach, which has been adopted in the present study, is to modify the block structure 
of the composite grid only at the relaxation step, employing domain decomposition techniques with 
load-balancing criteria. Taking advantage of the rectangular shape of the subgrids, it is possible to split 
the relaxation work (most of the calculations) equally among the available processors. Following this 
approach, which is based on the FAC method,16 at each multigrid level of the relaxation step the 
subgrids of mesh density equal to or higher than the current multigrid level are recomposed to form 
larger subgrids (superblocks) of rectangular shape where possible. The superblocks are redecomposed 
to blocks, with their size depending on the number of processors, and finally each block is attached to 
each processor for the relaxation step. Referring only to computing machines with a small or moderate 
number of processors, the proposed partitioning strategy has the advantage of perfect load balancing 
independently of the dynamically adaptive structure of the composite grid. Furthermore, to avoid any 
data interdependences, the same Gauss-Seidel point relaxation scheme has been used everywhere 
except at the new block interfaces, where the relaxation scheme changes to Jacobi type. 

7. RESULTS 

In order to verify the accuracy and validate the efficiency of the proposed method, two popular 
transonic inviscid test cases have been investigated. The first case is an NACA-0012 aerofoil at Mach 
0.80 and an angle of attack of 1-25", while the second case is an RAE-2822 aerofoil at Mach 0.73 and 
2.79". A work unit is defined as the CPU time required for a global finest grid relaxation sweep in 
lexicographic order, while for a single-grid run one time step costs four work units (four relaxation 
sweeps per time step). 

Starting from a two-grid global multigrid scheme with 64 x 14 volumes at the finest grid level, two 
additional grid refinement levels are allowed for both test cases. For the convergence criterion the 
Euclidean norm of the correction vector is employed. For the first test case (NACA-0012) the 
computed truncation error contours (Figure 3) and the pressure error contours (Figure 4) are depicted. 
The comparison betweem the computed truncation and pressure errors shows very similar results. 
Taking into consideration the truncation error prediction, the adaptive mesh generation procedure is 
shown in Figure 5. Starting from a global coarse grid (64 x 14; Figure 5(a)), a new composite grid of 
four subgrids is generated (Figure 5@)) and after the last truncation error prediction a composite grid 
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Figure 3. Computed tnumuion aror  contours fot the finer grid level (case I )  

Figure 4. Total pressure crmr contours for the finer grid level (casc 1) 
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Figure 5. Adaptive mesh generation steps of the BAh4 method (case 1): (a) the initial (64 x 14) mesh; @) one local refinement 
creates four subgrids (one subgrid at the finer grid level); (c) the final composite mesh with nine subgrids (two subgnds at the 

finest and four at the finer levels) 

consisting of nine subgrids at three different grid levels is finally generated as can be Seen in Figure 
5(c). In a closer view of the aerofoil the Mach contours together with the composite grid are depicted in 
Figure 6. By adopting the proposed method, very accurate results can be obtained in comparison with 
the global grid solutions as depicted in Figure 7, where the Mach distributions along the aerofoil are 
shown for two global grids (256 x 56 and 128 x 28) and one adaptive composite grid. The 
comparison of Mach distributions along the aerofoil shows that in regions of similar mesh size the 
solutions from the global grid and the local refinement practically coincide. In Figure 8 the great 
efficiency of the BAM method with respect to the single-grid and global multigrid schemes is clearly 
demonstrated, where 19-fold and fourfold accelerations are achieved respectively. The final adaptive 
grid solution requires 4.5 times fewer volumes (from 14,336 to 3200) for practically the same accuracy 
as with the globally refined grid (0.35% discrepancy in the computed lift coefficient CL). 

Similar efficiency has been achieved for the second test case. The final domain decomposition into 
nine subgrids takes place after 50 times steps on coarser grid levels. Using the same truncation error 
threshold as in the previous test case, a 17-fold acceleration has been achieved with respect to the 
single grid and a 4.7-fold reduction in the number of volumes (from 14,336 to 3056) for practically the 
same accuracy (CL discrepancy 0.2%). The convergence histories of the e m r  reduction and the lift 
coefficient are shown in Figure 9, while in Figure 10 the final composite grid together with the isomach 
contours is depicted. It is important that throughout the solution process the multigrid convergence 
rates are maintained while the overhead for the interface computations is negligible, e.g. the overhead 
is only 2% for a nine-block structure with respect to an equivalent global grid. 
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Figure 10. Closer view of the composite mesh together with the Mach contours (case 2): ~ , Mach 1 
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Figure 1 1 .  Parallelization-the decomposition of the superblocks depending on the multigrid level (case 2): (a) the two finest 
subgrids are decomposed into four blocks each (the subgrids cannot form one rectangular superblock); (b) at the coarser 
multigrid level, six subgrids form a single sujxrblock; (c) at the next coarser level, nine subgrids form a superblock which is a 

global grid (the numbers denote the blocks and the CorreSpondinB processor) 
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Finally, to test the performance of the proposed BAM method on parallel computers, a four- 
processor machine has been used. The domain decomposition procedure proposed is shown in Figure 
1 1  for the second test case. Solving the final composite grid (nine subgrids at three different grid 
levels) at the finest multigrid level, each finest subgrid is divided into four blocks which are assigned to 
each of the processors (Figure 1 l(a)). When the multigrid cycle moves to the next coarser level, at the 
relaxation step the four subgrids of the current grid level together with two subgrids of the finest level 
are joined together to form the superblock depicted in Figure ll(b). Them this superblock is 
decomposed into four blocks which are relaxed in parallel. Finally, at the other grid levels of the 
multigrid cycle the superblocks formed are global grids (they cover the entire domain) and again they 
are divided into four equal sublocks (Figure 1 l(c)). The convergence histories are depicted in Figure 
12, where the comparison between the serial code and the parallel code for a single processor (where 
the superblocks are still divided into four blocks) shows that although communication among blocks is 
reduced, the convergence rate is presented. Clearly, when four processors are used, the computer time 
is halved, though for finer grids the performance is expected to increase more. In Figure 12 it can be 
seen that with the cost of only 20 work units and onequarter of the number of volumes of a global grid 
an accurate solution of the flow can be provided. 

8. CONCLUSIONS 

The great advantages of the block adaptive multigrid @AM) method are exhibited. The incorporation 
of numerous efficient schemes into the BAM method makes the ultimate target of solving complex 
problems in just a few work units feasible. At the same time the robustness, simplicity and accuracy of 
the single-grid code are maintained with the new method. Although the basic features of the BAM 
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method have been determined and verified, some issues remain to be settled. The first is the 
development of a data structure that will handle more efficiently the block structure of the composite 
grid. The second issue is to combine the truncation error prediction with other solution error 
techniques for more accurate predictions of viscous and hypersonic flows. 

The extension to viscous and three-dimensional problems is straightforward, though semi- 
coarsening multigrid can also be included especially for hypersonic and turbulent flows. On the other 
hand, to improve the grid adaptation capabilities, a combination of the present method with a moving 
grid point scheme should also be considered, since grid alignment towards certain flow features is 
essential in some flow problems. Additionally, the implementation of the BAM method for other 
solution algorithms and equations is foreseen, since the BAM method has been designed within the 
general concept of the finite volume method. 
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